1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
use std::fmt;

/// A statement in propositional logic.
///
/// For example, `p /\ (~q)` would be representated in the following way.
///
/// ```
/// let p = resolution_prover::term("p".to_string());
/// let q = resolution_prover::term("q".to_string());
///
/// let not_q = resolution_prover::not(q);
///
/// let p_and_not_q = resolution_prover::and(p, not_q);
/// ```
#[derive(Debug)]
#[derive(PartialEq)]
#[derive(Clone)]
pub enum Proposition {
    Or(Box<Proposition>, Box<Proposition>),
    And(Box<Proposition>, Box<Proposition>),
    Implies(Box<Proposition>, Box<Proposition>),
    Iff(Box<Proposition>, Box<Proposition>),
    Not(Box<Proposition>),
    Term(String)
}

/// Creates a proposition that is the disjunction of the two given
/// propositions.
///
/// ```
/// let p = resolution_prover::term("p".to_string());
/// let q = resolution_prover::term("q".to_string());
///
/// let p_or_q = resolution_prover::or(p, q);
///
/// let expected = "p \\/ q";
///
/// assert_eq!(p_or_q.to_string(), expected);
/// ```
pub fn or(a: Proposition, b: Proposition) -> Proposition {
    Proposition::Or(
        Box::new(a),
        Box::new(b)
    )
}

/// Creates a proposition that is the conjucntion of the two given
/// propositions.
///
/// ```
/// let p = resolution_prover::term("p".to_string());
/// let q = resolution_prover::term("q".to_string());
///
/// let p_and_q = resolution_prover::and(p, q);
///
/// let expected = "p /\\ q";
///
/// assert_eq!(p_and_q.to_string(), expected);
/// ```
pub fn and(a: Proposition, b: Proposition) -> Proposition {
    Proposition::And(
        Box::new(a),
        Box::new(b)
    )
}

/// Creates a proposition that is the implication consisting of the two given
/// propositions as the antecedent and consequent repsectively.
///
/// ```
/// let p = resolution_prover::term("p".to_string());
/// let q = resolution_prover::term("q".to_string());
///
/// let p_implies_q = resolution_prover::implies(p, q);
///
/// let expected = "p -> q";
///
/// assert_eq!(p_implies_q.to_string(), expected);
/// ```
pub fn implies(a: Proposition, b: Proposition) -> Proposition {
    Proposition::Implies(
        Box::new(a),
        Box::new(b)
    )
}

/// Creates a proposition that is the biconditional of the two given
/// propositions.
///
/// ```
/// let p = resolution_prover::term("p".to_string());
/// let q = resolution_prover::term("q".to_string());
///
/// let p_iff_q = resolution_prover::iff(p, q);
///
/// let expected = "p <-> q";
///
/// assert_eq!(p_iff_q.to_string(), expected);
/// ```
pub fn iff(a: Proposition, b: Proposition) -> Proposition {
    Proposition::Iff(
        Box::new(a),
        Box::new(b)
    )
}

/// Creates a proposition that is the negation of the given proposition.
///
/// ```
/// let p = resolution_prover::term("p".to_string());
///
/// let not_p = resolution_prover::not(p);
///
/// let expected = "~(p)";
///
/// assert_eq!(not_p.to_string(), expected);
/// ```
pub fn not(prop: Proposition) -> Proposition {
    Proposition::Not(Box::new(prop))
}

/// Creates a term from the given string.
///
/// ```
/// let p = resolution_prover::term("p".to_string());
///
/// let expected = "p";
///
/// assert_eq!(p.to_string(), expected);
/// ```
pub fn term(value: String) -> Proposition {
    Proposition::Term(value)
}

impl fmt::Display for Proposition {
    /// Displays the proposition using cominations of ascii characters to
    /// represent the propositional logic operations.
    ///
    /// ```
    /// let hello = resolution_prover::Proposition::Term("hello".to_string());
    /// let hi = resolution_prover::Proposition::Term("hi".to_string());
    ///
    /// let not_hi = resolution_prover::not(hi);
    ///
    /// let hello_and_not_hi = resolution_prover::and(hello, not_hi);
    ///
    /// let expected = String::from("hello /\\ ~(hi)");
    ///
    /// assert_eq!(format!("{}", hello_and_not_hi), expected);
    /// ```
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Proposition::Or(ref a, ref b) => {
                write!(f, "{} \\/ {}", a, b)
            },
            Proposition::And(ref a, ref b) => {
                write!(f, "{} /\\ {}", a, b)
            },
            Proposition::Implies(ref a, ref b) => {
                write!(f, "{} -> {}", a, b)
            },
            Proposition::Iff(ref a, ref b) => {
                write!(f, "{} <-> {}", a, b)
            },
            Proposition::Not(ref a) => write!(f, "~({})", a),
            Proposition::Term(ref a) => write!(f, "{}", a),
        }
    }
}